

Department: School of Materials Science and Engineering Professional field: Materials Science & Engineering E-mail: syang@ecust.edu.cn

Profile

2020 East China University of Science and Technology, Professor
2019 Shandong University, Professor
2018 University of Nebraska – Lincoln, Postdoctoral Research Fellow
2017 Nanyang Technological University, Postdoctoral Research Fellow
2016 East China University of Science and Technology, Ph.D.
2011 Qingdao University of Science and Technology, B.E.

Research Field

Our research focus on the opto-electrical material and devices. We hope to elucidate the fundamental processing-structure-property relationships of novel materialss and devices on the atomic and molecular scale.

1. Design and synthesis of semiconducting crystals.

2. Next-generation Solar Cells. Our current solar cell project consists of perovskite based and organic-inorganic hybrid solar devices.

3. Optoelectronic Information Devices. We are interested in devices with the capacity of signal detection, transmission and storage.

Research results and selected published papers

1. Jingjing He, Junxian Liu, Yu Hou*, Yun Wang*, Shuang Yang*, Hua Gui Yang, Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells, Nature Communications, 2020, 11, 4237. (reported by Nanowerk: "Chelation - a new bonding mode for stable perovskite surface")

2. Ze Qing Lin, Hong Wei Qiao, Zi Ren Zhou, Yu Hou, Xiaolong Li, Hua Gui Yang*, Shuang Yang*, Water assisted growth of oriented, large grain-sized CsPbI2Br perovskite films with solar cell efficiency exceeding 16%, Journal of Materials Chemistry A, 2020, 8, 17670-17674.

 Shuang Yang#, Shangshang Chen#, Edoardo Mosconi, Yanjun Fang, Xun Xiao, Congcong Wang, Yu Zhou, Zhenhua Yu, Jingjing Zhao, Yongli Gao, Filippo De Angelis, Jinsong Huang*, Stabilizing halide perovskite surfaces for solar cell operation with wide–bandgap lead oxysalts, Science, 2019, 6452 (365), 473-478.(ESI highly cited paper, ESI hot paper, highlighted by Physics Word: "Can surface treatments enable commercial perovskite solar cells?")

3. Shuang Yang, Jun Dai, Zhenhua Yu, Yuchuan Shao, Yu Zhou, Xun Xiao, Xiao Cheng Zeng, and Jinsong Huang*, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells, Journal of the American Chemical Society, 2019, 141 (14), 5781–5787.(ESI highly cited paper, ESI hot paper)

4. Shuang Yang#, Zeyuan Xu#, Sha Xue, Praneeth Kandlakunta, Lei Cao* and Jinsong Huang*, Organohalide lead perovskites: more stable than glass under gamma-ray radiation, Advanced Materials, 2019, 31, 1805547.

5. Hong Wei Qiao#, Shuang Yang#, Yun Wang#, Xiao Chen, Tian Yu Wen, Li Juan Tang, Qilin Cheng, Yu Hou*, Huijun Zhao*, Hua Gui Yang*, A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor, Advanced Materials, 2019, 1, 1804217.(ESI highly cited paper)

6. Shuang Yang, Wenxin Niu, An-Liang Wang, Zhanxi Fan, Bo Chen, Chaoliang Tan, Qipeng Lu and Hua Zhang*, Ultrathin organic-inorganic perovskite nanosheets with bright, tunable photoluminescence and high stability, Angewandte Chemie International Edition, 2017, 56 (15), 4252-4255. (ESI highly cited paper, VIP paper, reported by Advance Science News: "Solvent is the key to making perovskite nanosheets")

7. Shuang Yang#, Yun Wang#, Porun Liu, Yi Bing Cheng, Hui Jun Zhao*, Hua Gui Yang*,
Functionalization of perovskite thin films with moisture-tolerant molecules, Nature Energy, 2016, 1,
15016. (cover, ESI hot paper, ESI highly cited paper, highlighted by Chemistry Word:"Dip coating to solve perovskite moisture sensitivity")

 Shuang Yang#, Bing Xing Yang#, Long Wu#, Yu Hang Li, Porun Liu, Huijun Zhao, Yan Yan Yu, Xue Qing Gong*, Hua Gui Yang*, Titania single crystals with a curved surface, Nature Communications, 2014, 5, 5355.

10. Shuang Yang, Yi Chu Zheng, Yu Hou, Xiao Chen, Ying Chen, Yun Wang, Huijun Zhao and Hua Gui Yang*, Formation mechanism of freestanding CH3NH3PbI3 functional crystals: in situ transformation vs dissolution-crystallization, Chemistry of Materials, 2014, 26 (23), 6705-6710.