

Department: School of Biotechnology Professional field: Biochemical Engineering E-mail: jbao@ecust.edu.cn

Profile

EDUCATION: PhD, Biochemical Engineering, Yamaguchi University, Ube, Japan, 1997-2001; Master of Engineering, Chemical Reaction Engineering, Zhejiang University, Hangzhou, China, 1995-1997; Bachelor of Engineering, Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China, 1980-1984.

RESEARCH EXPERIENCES: 2006-Present: Professor, School of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; 2001-2006: Postdoctoral Associate, Biochemical Engineering Program, University of California, Davis, CA, USA.

Research Field

 Industrial biotechnology and process engineering of lignocellulose biorefinery technology for Bioproduction of liquid biofuels and bio-based chemicals

2. Metabolic engineering of biorefinery fermenting microorganisms for high tolerance and pentose utilization from lignocellulose.

Research results and selected published papers

1. Zhao Yan1, Xiaochuang Gao1, Qiuqiang Gao, Jie Bao*. Identification, tolerance mechanism and metabolic modification of biorefinery fermentation strains to lignin derived inhibitor p-benzoquinone. Applied and Environmental Microbiology 2019, 85:e01443-19.

2. Pingping Zhou¹, Ruimiao Yao¹, Hongsen Zhang, Jie Bao^{*}. Unique glucose oxidation catalysis of Gluconobacteroxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Biotechnology and Bioengineering 2019, 116:2191-2199.

3. Xia Yi1, Qiuqiang Gao1, Lei Zhang1, Xia Wang, Yanqing He, Fengxian Hu, Jian Zhang, Gen Zou, Shihui Yang, Zhihua Zhou*, Jie Bao*. Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnology for Biofuels 2019, 12:126.

 Jingbai Wen, Jie Bao*. Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin rich corn stover hydrolysate. Biotechnology for Biofuels 2019, 12:86.
 Ci Jin1, Weiliang Hou1, Ruimiao Yao1, Pingping Zhou, Hongsen Zhang, Jie Bao*. Adaptive evolution of Gluconobacteroxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Bioresource Technology 2019, 289:121623.

6. Xushen Han1, Li Li1, Jie Bao*. Microbial extraction of biotin from lignocellulose biomass and its application on glutamic acid production. Bioresource Technology 2019, 288:121523.

 Gang Liu, Jie Bao*. Constructing super large scale cellulosic ethanol plant by decentralizing dry acid pretreatment technology into biomass collection depots. Bioresource Technology 2019, 275:338-344.

8. Gang Liu1, Qiang Zhang1, Hongxing Li, Abdul SattarQurishi, Jian Zhang, Xiaoming Bao*, Jie Bao*. Dry biorefining maximizes the potentials of simultaneous saccharification and co-fermentation for cellulosic ethanol production. Biotechnology and Bioengineering 2018, 115, 60-69.

9. Jingbai Wen, Yanqiu Xiao, Ting Liu, Qiuqiang Gao, Jie Bao*. Rich biotin content in lignocellulose biomass plays the key role in determining cellulosic glutamic acid accumulation by Corynebacterium glutamicum. Biotechnology for Biofuels 2018, 11, 132.

 WeiliangHou, Maofen Zhang, Jie Bao*. Cascade hydrolysis and fermentation of corn stover for production of high titer gluconic and xylonic acids. Bioresource Technology 2018, 264:395-399.
 WeiliangHou, Jie Bao*. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger. Bioresource Technology 2018, 253, 72-78.

12. ZhongyangQiu, Qiuqiang Gao, Jie Bao*. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic L-lactic acid fermentation. Bioresource Technology 2018, 249, 9-15.

HanqiGu, Ruixin An, Jie Bao*. Pretreatment refining leads to constant particle size distribution of lignocellulose biomass in enzymatic hydrolysis. Chemical Engineering Journal 2018, 352:198-205.
 Xushen Han, Jie Bao*. General method on correcting the fluctuation of acid based pretreatment efficiency of lignocellulose for highly efficient bioconversion. ACS Sustainable Chemistry & Engineering 2018, 6(3):4212-4219.

 Jian Zhang*, Cheng Lei, Gang Liu, Yanwen Bao, VenkateshBalan*, Jie Bao*. In-situ vacuum distillation of ethanol helps to recycle cellulase and yeast during SSF of delignified corncob residues. ACS Sustainable Chemistry & Engineering 2017, 5, 11676-11685.

16. WeiliangHou, Lang Li, Jie Bao*. Oxygen transfer in high solids loading and highly viscous

lignocellulose hydrolysates. ACS Sustainable Chemistry & Engineering 2017, 5, 11395-11402.

17. Abdul Sattar Qureshi, Jian Zhang*, Leonardo da Costa Sousa*, Jie Bao*. An antibacterial peptide secreted by Pediococcus acidilactici enables efficient cellulosic open L-lactic acid fermentation. ACS Sustainable Chemistry & Engineering 2017, 5, 9254-9262.

 Xia Wang, Qiuqiang Gao, Jie Bao*. Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnology for Biofuels 2017, 10:24.

 Ruimiao Yao1, Weiliang Hou1, Jie Bao*. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacteroxydans. Bioresource Technology 2017, 244: 1188-1192.

 Gang Liu, Jie Bao*. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol. Bioresource Technology 2017, 245: 18-26.

21. Gang Liu, Jie Bao*. Evaluation of electricity generation from lignin residue and biogas in cellulosic ethanol production. Bioresource Technology 2017, 243:1232-1236.

22. ZhongyangQiu, Qiuqiang Gao, Jie Bao*. Constructing xylose-assimilating pathways in Pediococcus acidilactici for high titer D-lactic acid fermentation from corn stover feedstock. Bioresource Technology 2017, 245, 1369-1376.

23. Ping-Ping Zhou, Jiao Meng, Jie Bao*. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresource Technology 2017, 224:563-572.

24. Hongsen Zhang1, Xushen Han1, Chengxiang Wei1, Jie Bao*.Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacteroxydans. Bioresource Technology 2017, 224:573-580.

25. Shuai Shao, Jian Zhang*, WeiliangHou, Abdul Sattar Qureshi, Jie Bao. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment. Bioresource Technology 2017, 238: 744-748.

26. Hongsen Zhang1, Gang Liu1, Jian Zhang, Jie Bao*. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacteroxydans and techno-economic analysis. Bioresource Technology 2016, 219:123-131.

27. Hongsen Zhang, Jian Zhang, Jie Bao*. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification. Bioresource Technology 2016, 203:211-219.

 Juan Wang, Qiuqiang Gao, Huizhan Zhang, Jie Bao*. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporoncutaneum using lignocellulose feedstock. Bioresource Technology 2016, 218:892-901.

29. Jian Zhang1, Shuai Shao1, Jie Bao*. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation. Bioresource Technology 2016, 201:355-359.

30. Yanqing He, Jian Zhang, Jie Bao*. Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation.Biotechnology for Biofuels 2016, 9:19.

 Hanqi Gu, Jian Zhang, Jie Bao*. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue. Biotechnology and Bioengineering, 2015, 112:1770-1782.

32. Xia Yi, HanqiGu, Qiuqiang Gao, Z. Lewis Liu*, Jie Bao*.Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnology for Biofuels, 2015, 8:153.

33. Xia Wang, Qiuqiang Gao, Jie Bao*. Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment. Biotechnology for Biofuels, 2015, 8:136.

34. Gang Liu1, Jiaoe Sun1, Jian Zhang1,Yi Tu,Jie Bao*. High titerL-lactic acid production from corn stoverwith minimum wastewater generationand techno-economic evaluation based on Aspen plus modeling. Bioresource Technology, 2015, 198:803-810.

35. Ke Liu, Jian Zhang, Jie Bao*. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications. Bioresource Technology, 2015, 196:716-720.
36. Abdul Sattar Qureshi, Jian Zhang, Jie Bao*. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain. Bioresource Technology, 2015, 189:399-404.